
AlllQM TDlbbM

NIST’

Epubucations

NISTIR 5762

standard Generalized Markup
Language Test Suite

Evaluation Report

Craig S. Russell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Office Systems Engineering Group

Gaithersburg, MD 20899

QC

100

.056

NO. 5762

1995

NIST

NISTIR 5762

standard Generalized Markup
Language Test Suite

Evaluation Report

Craig S. Russell

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Office Systems Engineering Group

Gaithersburg, MD 20899

November 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

SGML
TEST SUITE

EVALUATION REPORT

by

Craig S. Russell

Systems and Software Technology Division

Computer Systems Laboratoiy

National Institute of Standards and Technology

January 10, 1995

FY93 CALS TASK 9.2. "Evaluate SGML Test Suites."

Deliverables Report of Evaluation and Recommendations

- ABSTRACT -

NIST has been tasked by the Continuous Acquisition and Life-cycle Support (CALS) Project

Office to organize an SGML Conformance Testing Service. The first step in producing a

conformance testing service was to produce a thorough test suite. The goal of this project was

to evaluate existing test suites for use as the basis within an SGML conformance testing

service. This document describes the methodology used in analyzing an SGML Test Suite and

the different types of tests run with the various SGML products at NIST’s disposal.

Table of Contents

1 EXECUTIVE SUMMARY 1

2 GOAL 1

3 BACKGROUND 1

4 METHODOLOGY 2

5 CONCLUSION 2

APPENDIX A. EVALUATION PROCEDURES 3

APPENDIX B. SAMPLE TEST RESULTS 6

V

1 EXECUTIVE SUMMARY

NIST has been tasked by the Computer Acquisition and Life-Cycle Support Office (CALS) to

organize a Standard Generalized Markup Language (SGML) Conformance Testing Service.

The first step in producing a conformance testing service was to produce a thoroughly

comprehensive Test Suite. The Exoterica Corporation’s SGML Test Suite has been analyzed

and determined to be the most thorough and complete SGML Test Suite available. Therefore,

NIST has decided to use Exoterica’s Test Suite for the SGML conformance testing service.

2 GOAL

The primary purpose of this project was to evaluate existing test suites and to qualify them for

use as a basis for implementation within an SGML conformance testing service.

Conformance testing of document interchange standards is a complex task. SGML has its

own set of particular difficulties and implications. NIST developed a limited Test Suite for

its parser which is based on CALS requirements. However, since the initial development of

the NIST conformance Test Suite, International Organization for Standardization (ISO) 8879

(which covers SGML) was revised with the addition of Amendment 1. In addition, CALS
requirements were also modified. Therefore, a complete evaluation of the existing SGML
Test Suite was necessary. Analytical evaluation aided in producing a more coherent testing

policy and test procedure report for the SGML conformance testing service.

Although currently there are no affordably priced products available to the general public off

the shelf, the number of commercially available products utilizing SGML is increasing.

However, to ensure consistency within parser development, it would be advantageous for

users of SGML products, both in government and commercial arenas, to have an SGML
conformance testing service.

3 BACKGROUND

Two (CBD) announcements were released in September 1992, requesting existing executable

Test Suites or toolkits to support conformance testing of ISO 8879 and MIL-M-28001B.

NIST received seven responses to the CBD announcements.

None of the vendors adequately addressed the CBD announcement. Most of these vendors

offered no tools or Test Suites. The Office Systems Engineering (OSE) Group contacted

various vendors looking for additional Test Suites/tools. After contacting numerous

individuals both in this country and abroad, we identified the existence of three additional

Test Suites besides the NIST Test Suite.

All three companies were sent letters under an official NIST letterhead to encourage them to

submit their Test Suites. In March 1993, Exoterica Corporation submitted its Test Suite. The

other two companies would not respond to our attempts to encourage them to submit their

1

Test Suites.

During development of the NIST parser, NIST designed its own in-house Test Suite. The

NIST parser, based on MIL-M-28001 requirements, was never intended to be a complete

SGML commercially available parser product.

4 METHODOLOGY

The following information is the methodology used for evaluating the Exoterica Test Suite.

The beginning phase of the research commenced by our gaining an understanding of the

Exoterica conformance Test Suite. ISO 8879 and the Exoterica (three ring notebook) version

of the Test Suite were placed side by side. The two resources were scanned visually, and

each Test module that covered an appropriate SGML production was identified. The SGML
abstract syntax is specified by formal syntax productions. A production consists of a

reference number, the name of the syntactic variable being defmed, an equals sign, and an

expression that constitutes the defmition. Some test scripts from the Exoterica Test Suite

provided coverage for only one segment of a production, while other scripts often overlapped

several productions. The test scripts were manually read and analyzed to ensure that the three

ring notebook version of the Test Suite did not contain hidden sometimes difficult to locate:

publication type errors. The three ring notebook of the Test Suite allows for human review of

the test scripts, as well as showing the parser results. When a selected parser was tested

against a production script, the parser’s output was expected to produce similar output

specifications as those defmed in the Test Suite.

5 CONCLUSION

Exoterica’ s Test Suite and the NIST Test Suite were analyzed to determine their completeness

for use as a possible basis for the SGML Conformance Test Suite. It was acknowledged

beforehand that the NIST Test Suite was not complete. The acquisition of the Exoterica Test

Suite provided NIST a complete Test Suite to examine. Therefore, the majority of the

evaluation time was spent examining the Exoterica Test Suite. The Exoterica Test Suite

consists of over two thousand scripts and is a thorough SGML Test Suite. Approximately

two-thirds of the Exoterica tests measure conformance to FIPS 152. Several months of

extensive investigative testing was done on the Exoterica Test Suite and many controlled test

runs were conducted with the Exoterica Test Suite against the different SGML products that

NIST had in its possession. The research fmdings demonstrated that each vendor’s product

parsed a similar test script differently.

2

APPENDIX A

EVALUATION PROCEDURES

NIST obtained several SGML products to evaluate. The evaluation closely monitored a

product’s ability to detect, warn, and accurately report a document’s status. Before

conducting actual tests, research team members examined the product’s features, attributes,

and operating procedures. The criteria established for testing a product was to determine

consistency and clarity of parser output. For example, script segments extracted from the Test

Suite generated a batch process that tested a particular SGML production. These segments

executed imbedded instructions to parse and compare product results. The batch process

caused Product "A" to parse the test script. Product "B" parsed the same test script file after

minor adjustments (parser name, etc.) to the batch file. The parsed output obtained from

products "A" and "B" showed a wide range of results.

The following section discusses the procedures used while examining the Exoterica Test Suite.

The NIST Test Suite and the Exoterica Test Suite were evaluated to determine if the two Test

Suite’s would allow for further development of a single formal conformance Test Suite.

Initially the composition of the Exoterica Test Suite was unknown by NIST. The Exoterica

Test Suite required a substantial amount of time to examine and thoroughly investigate its

roughly twenty-three hundred scripts. Therefore, most of the research time was spent

examining the Exoterica Test Suite.

The analyst examined the Test Suite and the SGML Standard side-by-side, looking at each

language production and how the test scripts tested these productions. The Exoterica test

Suite clearly identified the relative productions indicated in the ISO Standard 8879.

Amendment 1 of ISO 8879 is included in the Exoterica Test Suite. A yellow marker pen was

used to highlight each production or specific portion of a production that a test script covered.

Some scripts tested only small portions of a production while others tested most or all of a

production’s properties. The entire Test Suite took several weeks to completely examine

using this method.

The Test Suite’s structure showed each test script and its corresponding Reference Application

for SGML Testing (RAST) output. The format provided the analyst a visual illustration of

each production and test. At the conclusion of a parse, the data was collected and compared

against previously defmed RAST output of the same production. This process helped to

promote a more accurate test. In the course of evaluating the content of the Exoterica Test

Suite, NIST conducted parsing tests using these modules against several SGML based

products.

Before testing each product in NIST’s possession, the following examination procedures were

performed. The first requirement was to evaluate the product’s features. This increased the

3

analyst’s understanding of each product. Each SGML product was installed onto a single

computer hard disk. This was done as prescribed by the basic installation instructions

packaged with each product. Product manuals and "readme" files provided with the

applications (especially sections covering parsing) were read. Another requirement consisted

of conducting controlled test runs to understand firsthand the potential pitfalls which may later

be encountered during formal testing. These actions helped to gage the possible performance

characteristics during an actual test. This knowledge is vital to the researcher if later he/she is

asked to provide further guidance to government or commercial officials wishing to increase

their understanding of how the products performed. The information obtained from parser

conformance testing has enabled NIST too better contribute to standards development

committees. Having a firsthand, practical knowledge of systems is invaluable in designing

new standards and establishing conformance testing policies.

This section outlines procedures maintained during testing. Batch files were written to

automate the running of the Exoterica Test Suite modules. These batch files allowed each

product’s test results to be directed and handled in a prescribed manner. From the operating

system prompt, command line statements using Exoterica query language constructs were

issued as arguments which collected production tests modules.

The query function caused execution of a single executable batch file to be created. When
this batch file was run, it grouped production tests along with corresponding RAST results

into one output file. The Exoterica Test Suite executing from a CD-ROM contained over two

thousand production scripts that are modularized into groups that test a given production.

Test results were written to an external file in a predetermined format so that they could later

be examined. To check the accuracy and flow of data prior to the actual test, portions of a

Test Suite module were modified in size. The average module contained over fifty lines of

instructions. The analyst reduced the file size to approximately five lines of instructions.

Since each product produced application specific output formats that differed in description

and structure from each parser, the test results were tweaked to produce a standard, structured

output that allowed for easier follow-up evaluation. Awk scripts (data transformation, report

generation language) and DOS batch files that the analysist developed were then used to

inspect and organize parsed output results into alternate storage files. The scripts/batch files

wrote to and extracted information from the test results and categorized the output as either a

success, failure, warning, or other possible SGML violation. Other problems that may have

occurred during the parse were also maintained in an external file. Initially, the Exoterica

Test Suite scripts were used to confirm only test output that reported as being "Successful"

(this means the parsing process correctly found and reported errors existing in a document or

validated that file as having no errors). If the modified script module performed correctly, the

entire module was run against the product. At the conclusion of each test, a single external

output file was generated that contained the product’s parsed data. The output file was stored

electronically, printed, and pasted into a lab notebook.

4

AWK scripts were written to extract specific items of information from each output file

following a completed test run. The information extracted by the AWK script was written to

another file where it was stored, printed, and examined manually using a text editor. Manual
examination of an output file was tedious and overwhelming, because there were over one
thousand results stored in that file. A query to inspect for minim al SGML conformance

(conforming to FIPS 152) produced a batch file containing over fourteen hundred test scripts.

At the completion of the test run, an output file was produced that contained over fourteen

hundred results. Therefore, it became apparent that the evaluation of the output files had to

be automated. The manual examination process was automated by the development of script

files that looked for certain streams of data. Scripts varied with each completed test result

file. The evaluation process culminated with the cataloging and archiving of test result data.

The goal of this entire process was to determine if the parsed output produced by a product

was accurate, reliable and consistent. The evaluation shifted its focus to those production

modules known to produce only errors when parsed. If the parser "passed" a file as having

no errors when in fact it did have errors, the parser would indicate an inability with the

product to recognize an invalid file. It should be noted here that some test script modules that

did not produce errors were altered so that they would produce an error when parsed. This

was done as an additional check on the parser. Test scripts were designed to check for valid

and invalid production states. Therefore, Awk scripts were written to find lines in an output

file that had the words "unsuccessful" or "error" and place these lines and file names into a

separate report file.

Again, only those lines of text in an output file indicating an error were checked. For each

module reporting an error the analyst examined that test module along with the corresponding

source file that was parsed to determine the validity of this finding. Whenever a parse error

was encountered in an output file the nature and cause of this error was determined. Was the

test incorrectly run or did the product reach this false conclusion based on the parser’s

construction? This question was investigated thoroughly since parser construction is based on

interpretations of the International Organization of Standandization (ISO). If the parser was

producing incorrect results (validating an invalid source file), the analyst next sought to

discover if the parser was interpreting ISO 8879 incorrectly or did the product simply lack

coverage of some minimal SGML productions.

The inconsistencies and various output formats associated with parser output made testing

SGML related products a challenging task. There are ambiguities within ISO Standard 8879

that allow for varied interpretations. Such ambiguities noted after the release of ISO 8879

and subsequent changes made to correct them with Amendment 1 may help lead to the

development of parser consistency and accuracy.

5

APPENDIX B

SAMPLE TEST RESULTS

This appendix contains listings of a cross section of the tests that were performed. Hundreds

of tests were performed in order to gain a working knowledge of the SGML products in

NIST’s possession. The primary researcher on this project kept a laboratory notebook which

was used to document all tests. It contains the date and time of all tests and is maintained in

a chronological order. It features a written summation of each experiment conducted, along

with a description of the source file, parser, date, test number, and result of each experiment.

The number of experiments performed filled multiple notebooks.

Many tests were performed in order to gain the knowledge necessary to develop a structured,

official testing methodology. Each of the products offered semantic-specific functionality.

Each of the products required the input document to be in a particular structure and produced

parsed output in an encoded, system-defined form. The customer using a SGML product

must be confident of the parsing accuracy in their product and also receive clear and non-

evasive output comments. Only one product produced parser output in a RAST-like format.

The RAST structure is the official ANSI format specifying how an SGML parser should

define output. One of the products examined in the test required that the SGML declaration

be altered due to the semantics of the document manager. While interpretation of the ISO

8879 is challenging, the conventions needed to utilize SGML-related products must be

consistent to ensure correct, meaningful and understandable results. What is meant by

compliant or non-compliant for a given document must be accurately stated. Some of the

products allow the user to supply their own SGML declaration while other products only

permit the use of a default declaration.

The following pages contain samples of the test runs that were performed. They are

displayed to give the reader some idea of the various types of tests that were conducted. In

no way are these listings meant to show favoritism or fault toward a particular vendor’s

product as this was not the goal of this project. The excerpts that follow were taken from the

lab notebook maintained during the evaluation, and the experiments should be self-

explanatory.

6

Experiment Summary

DATE 03-26-93

Summary; The source file dtdsampl.txt was moved from the DOS (plain ASCII text)

format and converted to UNIX format via the dos2unix command utility. The file was
transferred to an UNIX based operating system using file transfer protocol. The source files

were stored in directory "-/wptestsuite." The source file dtdsample.txt was checked for errors

which may have occurred during file transfer. And all "cap M" characters () encountered

were removed before parsing using the VI editor. The com-mand line argument issued for

the test was: "dtd21gc dtdsampl.txt -s sgml." In this test the default SGML declaration

provided by the product was used.

This test does not make a value judgement for or against the use of the product or features.

The test was conducted to determine the strength of output characteristics and not product

capabilities.

Test Descriptions

Test Number: TR3-26.01

Test description

Source file: dtdsampl.txt

Results: Successful Completion

7

Date: 3-26-93

Source file: dtdsampl.txt

Test number: TR3-26.01

Command line: dtd21gc dtdsample -s sgml

Processed on: SUN UNIX system Desktop SPARC

Result of parse :

External Entity Mapping File = None
SGML Declaration File =

/home/russell/wptestsuite/sgml

(Line 43, dtdsample)

Warning: Parse completed before end of file

*** SUCCESSFUL COMPLETION! ***

8

Experiment Summary

DATE: 3-31-93

Summary; The source file’s name was mdtdpro.unx. This was done to test a wider variety

of file structures against the parser. By attaching the preceding letter "m" to dtdpro.unx, the

analyst could later track the origin of the file. The "m" stands for Macintosh, the system from

which the document was obtained. The file was converted from plain ASCII text to UNIX
format. The file was then parsed. The command line argument was: "dtd21gc mdtdpro.unx".

The source file was stored in dir: "-/wptestsuite. " The source file was checked for errors. No
changes were made to the file and it was parsed. It is only the resulting output that is of

interest here.

Test Descriptions

Test Number: TR3-31.01

Test description

Source file: mdtdpro.unx

Results; "Expecting sgml or Doctype after mdo" was the reported output. The error was

detected successfully by the parser. The file’s Doctype statement is public, but ail the

appropriate l inks to the associated file were not supplied.

9

Date: 3-31-93

Source file; mdtdpro.unx

Test number: TR3-31.01

Command line: dtd21gc mdtdpro.unx -s sgml

Processed on: Sun UNIX system Desktop SPARC

Result of parse;

External Entity Mapping File = None

SGML Declaration File = /home/russell/wptestsuite/sgml

(Line 13, mdtdpro.unx)

SGML error:

Expecting SGML or DOCTYPE after MDO delimiter (’<!’)

***** LGC file not written!

10

Experiment Summary

DATE: 6-22-93

Summary: The source file, compltdsample, is a complete SGML document. Dtd and

document instance were intact and parsed. The file contained the example text used for the

Output Specification of MIL-M-28001A. The source file was checked for errors in text using

the VI text editor. The command line argument issued for the test was: "dtd21gc

compltdsample -s sgml." The application’s default declaration was used for this test, as

opposed to the declaration supplied with the actual file. The output produced by the parser

was analyzed; not the product’s functionality.

There were no errors found in the source document before it was parsed.

Test Descriptions

Test Number: TR6-22.01

Test description

Source file: compltdsample

Results: Successful Completion.

The source file was given the .Igc extension after a successful parse.

11

Date: 6-22-93

Source file: compltsample

Test number: TR6-22.01

Command line: dtd21gc compltsample -s sgml

Processed on: Sun System Desktop SPARC

Result of parse :

External Entity Mapping File = None

SGML Declaration File = /home/russell/wptestsuite/sgml

(Line 43, compltsample)

Warning: Parse completed before end of file

*** SUCCESSFUL COMPLETION! ***

12

Experiment Summary

DATE: 6-22-93

Summary: Parsed source file named compltsa. The file compltdsample used in earlier tests

is the same document marked for this test. The file name was shortened as a result of the

name length restriction of eight characters for a file stored on a MS-DOS operating system.

The original UNIX format of the file was transferred via ftp to a PC desktop computer. See

the lab book for a complete parser list and further information on the origin of this product.

The source file was checked for textual errors using a VI editor. The command line argument

was: "SGMLS compltsa." The default SGML declaration was used in this test as well.

Test Descriptions

Test Number: TR6-22.02

Test description

Source file: compltsa

Results: "Successful Completion." The parser also pointed out warnings regarding external

general entities it could not fmd. The parser is correct in issuing these warnings. There were

no mapping files supplied for these external entities. Note the difference in the resulting

structures of file output classifications.

13

Date;

Source file;

Test number;

6-22-93

compltsa

TR6-22.02

Command line; SGMLS compltsa

Processed on; Unitek 486

Result of parse ;

sgmls; Error at compltsa, line 7 in declaration parameter 5;

Could not fmd external general entity "fl 5 eagle"

sgmls; Error at compltsa, line 9 in declaration parameter 5;

Could not fmd external general entity "apcard"

TOTALCAP 995/35000

ELEMCAP 192/35000

GRPCAP 480/35000

EXGRPCAP 16/35000

EXNMCAP 16/35000

ATTCAP 56/35000

ATTCHCAP 8/35000

AVGRPCAP 112/35000

NOTCAP 16/35000

NOTCHCAP 99/35000

14

Experiment Summary

DATE: 6-22-93

Summary: Parsed source file named cals.doc. The file’s original name was retained as

cals.doc. The file is a complete conforming SGML document. No errors were found in the

file prior to its being parsed. The command line for the test run was: "SGMLS cals.doc."

Test Descriptions

Test Number: TR6-22.07

Test description

Source file: cals.doc

Results: "Successful Completion." The parser also pointed out additional warnings made
regarding external entities it could not locate on the system. The parser warning messages are

appropriately specified. There were no mapping links establishing the location of external

entities.

15

Date:

Source file:

Test number:

6-22-93

cals.doc

TR6-22.07

Command line: SGMLS cals.doc

Processed on: Unitek 486

Results of parse:

sgmls: Warning at cals.doc, line 20 in declaration parameter 28:

Unrecognized designating escape sequence "ESC 2/13 4/3"

sgmls: Error at cals.doc, line 477 in declaration parameter 5:

Could not fmd external parameter entity "ISOlatl"

sgmls: Error at cals.doc, line 480 in declaration parameter 5:

Could not find external parameter entity "ISOpub"

sgmls: Error at cals.doc, line 483 in declaration parameter 5:

Could not find external parameter entity "ISOgrk3"

sgmls: Error at cals.doc, line 486 in declaration parameter 5:

Could not fmd external parameter entity "ISOnum"

sgmls: Error at cals.doc, line 489 in declaration parameter 5:

Could not fmd external parameter entity "ISOtech"

TOTALCAP 118330/175000

ENTCAP 2880/35000

ENTCHCAP 4857/35000

ELEMCAP 4736/35000

GRPCAP 49760/70000

EXGRPCAP 448/35000

EXNMCAP 864/35000

ATTCAP 37024/50000

ATTCHCAP 513/35000

AVGRPCAP 17216/35000

NOTCAP 32/35000

16

Experiment Summary

DATE; 6-22-93

The files text was corrupted to change valid output to invalid. The document was repeatedly

executed through the parser to ensure accurate parsing output. The command line argument

issued for the test is "SGMLS cals.doc."

Test Descriptions

Test Number; TR6-22.08

Test description

Source file; cals.doc

Results; "The file parsed successfully with one warning." The warning was given due to a

reference to an unrecognized escape sequence in the SGML Declaration. The warning did

detect the change made to the file.

17

Date: 6-22-93

Source file: cals.doc

Test number: TR6-22.08

Command line: SGMLS cals.doc

Processed on: Unitek 486

Result of parse:

sgmls: Warning at cals.doc, line 20 in declaration parameter 28:

Unrecognized designating escape sequence "ESC 2/13 4/3"

TOTALCAP 118330/175000

ENTCAP 2880/35000

ENTCHCAP 4857/35000

ELEMCAP 4736/35000

GRPCAP 49760/70000

EXGRPCAP 448/35000

EXNMCAP 864/35000

ATTCAP 37024/50000

ATTCHCAP 513/35000

AVGRPCAP 17216/35000

NOTCAP 32/35000

18

Experiment Summary

DATE: 6-22-93

Summary; Parsed source file cals.doc. The file name was changed to cals.txt. The file was

sent via ftp to an UNIX system and placed in a directory called "-/workinhere." This directory

was used to store all files and results while testing this parser. Before testing, the source file

was checked for textual errors and all "cap M’s" (), were removed using the VI editor

extract feature. The application’s GUI was used to conduct all tests.

Test Descriptions

Test Number: TR6-22.10

Test description

Source file: cals.doc

Results: Successful completion, but there were four warnings given. All warning messages

correspond to a lack of external entity mapping links. Their output file is richer in details.

19

Date: 6-22-93

Source file: cals.doc

Test number: TR6-22.10

Command line: GUI driven options

Processed on: Sun UNIX system Desktop SPARC

Result of parse:

Dtgen Parser Warning:

While parsing file cals.txt-da/cals.txt/cals.txt.dtd:

Potential problem in the mixed content model of element CALLOUT. At some location

within the model, the entry of separators between tags will not always be permitted. It is

often possible to fix this problem by writing the #PCDATA model token in a repeatable OR
group.

(err:768 line: 1108 pos:43806)

Dtgen Parser Warning:

While parsing file cals.txt-da/cals.txt/cals.txt.dtd:

Potential problem in the mixed content model of element DBF. At some location within the

model, the entry of separators between tags will not always be permitted. It was often

possible to fix the problem by writing the #PCDATA model token in a repeatable OR group.

(err:768 line: 1108 pos:43806)

Dtgen Parser Warning:

While parsing file cals.txt-da/cals.txt/cals.txt.dtd:

Potential problem in the mixed content model of element ENTRY. At some location within

the model, the entry of separators between tags will not always be permitted. It is often

possible to fix this problem by writing the #PCDATA model token in a repeatable OR group.

(err:768 line: 1108 pos:43806)

Dtgen Parser Warning:

While parsing file cals.txt-da/cals.txt/cals.txt.dtd:

Potential problem in the mixed content model of element HOWTOUSE. At some location

within the model, the entry of separators between tags will not always be permitted. It is

often possible to fix this problem by writing the #PCDATA model token in a repeatable OR
group.

(err:768 line: 1108 pos:43806)

Dtgen Application Warning:

These Fosi variables are defmed but not referenced:

dashfill (CHARFILL)

20

bodyfolio (ARABIC)
figct (ARABIC)
listct (ARABIC)
sectct (ARABIC)
wdotfill (CHARFILL)
tabct (ARABIC)
subpara2ct (ARABIC)
seqlistct (ARABIC)
subparaSct (ARABIC)
foldoutct (ARABIC)
chapct (ARABIC)
graphicct (ARABIC)
subpara let (ARABIC)
paract (ARABIC)
frontfolio (ARABIC)
appfolio (ARABIC)
titlefolio (ARABIC)
subfigct (ARABIC)
spcfiil (CHARFILL)
rearfolio (ARABIC)
dotfill (CHARFILL)

Experiment Summary

DATE: 8-11-93

Summary: The page below shows the batch files employed for automating the execution of

this parser’s test. The system’s autoexec.bat file was changed to incorporate the new file

directory. The batch file was put in the correct directory. Also, the special program code

needed (scripting language), was placed in the same directory. The file containing the

scripting language code was named "qmp.xom." The command line arguments are found in

the file named omnisea.bat. The files parsed with this parser were stored in a separate

subdirectory. The batch file was put in a directory named "omnitest," while the source files

were placed in a subdirectory named "example."

Test Descriptions

Test Number: TR8-11.01

Test description:

Source file: Selected 6 Production test scripts from the vendor’s package

All errors in the files were reported and one file passed as it was expected.

@echo off

REM The file name is omnisea.bat

REM and executes a for statement

REM file name is omnitsrc.bat

for %%1 in (example*.*) do call omnisea.bat %%1
echo FINISHED
AAA

@echo off

REM file name is omnisea.bat

REM runs parser output to a file

echo ************************ » XR8-1101

echo Parser Output » TR8-1 1.01

echo FILE %1 » TR8- 11.01

omnimark %1 -s qmp.xom -alog TR8- 11.01

echo ************************ » TR8-1 1 01

22

Date: 8-11-93

Source file: Selected 6 scripts

Test number: TR8-11.01

Command line: see omnisea.bat on 8-11-93

Processed on: Unitek 486

Result of parse :

Parser Output

FILE example\GEPA3001

OmniMark V2R2
Copyright, (C) 1991 by Exoterica Corporation.

Parser Output

FILE example\P7579411

OmniMark V2R2
Copyright, (C) 1991 by Exoterica Corporation.

OMNIMARK.EXE -

SGML Error on line 43 in file example\P757941 1:

An attribute other than a CDATA attribute must not have a null literal

("") value or a value that does not have any name tokens in it.

In the ATTLIST for element "P75-G1", the default value for the IDREF
attribute "P75-A2" was empty.

There was 1 SGML error detected.

Parser Output

FILE example\P7D79411

OmniMark V2R2
Copyright, (C) 1991 by Exoterica Corporation.

OMNIMARK.EXE -
SGML Error on line 41 in file example\P7D7941 1:

An attribute other than a CDATA attribute must not have a null literal

("") value or a value that does not have any name tokens in it.

In the ATTLIST for element "P7D79411", the default value for the NUMBERS
attribute "P7D-Ar' was empty.

23

There was 1 SGML error detected.

:ie*:):5|c**!|«***’l'**=i«****

Parser Output

FILE exampleVIFM94101

OrtmiMark V2R2
Copyright, (C) 1991 by Exoterica Corporation.

OMNIMARK.EXE -

SGML Error on line 61 in file example\IFM94101:

The total number of opened entities must not exceed ENTLVL.

The entity being opened was "ifm-el7", and there are already 16 entities

opened (in addition to the document entity).

There was 1 SGML error detected.

He***********************

**********s|c***********:fc5|<

Parser Output

FILE exampleVEF 194303

OmniMark V2R2
Copyright, (C) 1991 by Exoterica Corporation.

OMNIMARK.EXE -

SGML Error on line 47 in file example\IF194303:

An entity must not end in a processing instruction.

The entity was "ifl-el".

There was 1 SGML error detected. OMNIMARK.EXE —

Parser Output

FILE example\IF394303

OmniMark V2R2
Copyright, (C) 1991 by Exoterica Corporation.

OMNIMARK.EXE -
SGML Error on line 45 in file example\IF394303:

An entity must not end inside a comment.

The entity was "if3-el".

There was 1 SGML error detected.

24

